H. L. Tytgat and W. M. De-vos, Sugar Coating the Envelope: Glycoconjugates for Microbe-Host Crosstalk, Trends Microbiol, vol.24, pp.853-861, 2016.

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, Mechanical Processes in Biochemistry, Annu. Rev. Biochem, vol.73, pp.705-748, 2004.

Y. F. Dufrêne, Sticky microbes: Forces in microbial cell adhesion, Trends Microbiol, vol.23, pp.376-382, 2015.

A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett, vol.24, pp.156-159, 1970.

A. Ashkin, Optical trapping and manipulation of neutral particles using lasers, Proc. Natl. Acad. Sci, vol.94, pp.4853-4860, 1997.

A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J, vol.61, pp.569-582, 1992.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, Stretching DNA with optical tweezers, Biophys. J, vol.72, pp.1335-1346, 1997.

M. S. Kellermayer, Folding-Unfolding Transitions in Single Titin Molecules Characterized with Laser Tweezers, Science, vol.276, pp.1112-1116, 1997.

J. Jass, S. Schedin, E. Fallman, J. Ohlsson, U. J. Nilsson et al., Physical properties of Escherichia coli P pili measured by optical tweezers, Biophys. J, vol.87, pp.4271-4283, 2004.

M. Castelain, P. G. Rouxhet, F. Pignon, A. Magnin, and J. Piau, Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae, J. Appl. Phys, vol.111, 2012.

K. H. Simpson, G. Bowden, M. Hook, and B. Anvari, Measurement of adhesive forces between individual Staphylococcus aureus MSCRAMMs and protein-coated surfaces by use of optical tweezers, J. Bacteriol, vol.185, pp.2031-2035, 2003.

K. H. Simpson, M. G. Bowden, M. Hook, and B. Anvari, Measurement of adhesive forces between S-epidermidis and fibronectin-coated surfaces using optical tweezers, Lasers Surg. Med, vol.31, pp.45-52, 2002.

K. H. Simpson, M. G. Bowden, S. J. Peacock, M. Arya, M. Höök et al., Adherence of Staphylococcus aureus fibronectin binding protein A mutants: An investigation using optical tweezers, Biomol. Eng, vol.21, pp.105-111, 2004.

O. Björnham, E. Fallman, O. Axner, J. Ohlsson, U. J. Nilsson et al., Measurements of the binding force between the Helicobacter pylori adhesin BabA and the Lewis b blood group antigen using optical tweezers, J. Biomed. Opt, vol.10, 2005.

M. Andersson, O. Axner, B. E. Uhlin, and E. Fällman, Characterization of the Mechanical Properties of Fimbrial Structures by Optical Tweezers

P. Hinterdorfer, G. Schutz, and P. Pohl, , pp.19-22, 2006.

M. Castelain, F. Pignon, J. Piau, A. Magnin, M. Mercier-bonin et al., Removal forces and adhesion properties of Saccharomyces cerevisiae on glass substrates probed by optical tweezer, J. Chem. Phys, vol.127, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00342008

O. Axner, O. Björnham, M. Castelain, E. Koutris, S. Schedin et al., Unraveling the Secrets of Bacterial Adhesion Organelles Using Single-Molecule Force Spectroscopy, Single Molecule Spectroscopy in Chemistry

A. Gräslund, R. Rigler, and J. Widengren, Springer Series in Chemical Physics, vol.96, pp.337-362, 2010.

O. Axner, M. Andersson, O. Bjornham, M. Castelain, J. Klinth et al., Assessing bacterial adhesion on an individual adhesin and single pili level using optical tweezers, Adv. Exp. Med. Biol, vol.715, pp.301-313, 2011.

O. Björnham, J. Bugaytsova, T. Boren, and S. Schedin, Dynamic force spectroscopy of the Helicobacter pylori BabA-Lewis b binding, Biophys. Chem, vol.143, pp.102-105, 2009.

G. I. Bell, Models for the specific adhesion of cells to cells, Science, pp.618-627, 0200.

E. Evans and K. Ritchie, Dynamic strength of molecular adhesion bonds, Biophys. J, vol.72, pp.1541-1555, 1997.
DOI : 10.1016/s0006-3495(97)78802-7

URL : https://doi.org/10.1016/s0006-3495(97)78802-7

E. Evans, Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss, vol.111, pp.1-16, 1998.
DOI : 10.1039/a809884k

E. Evans, Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy, Biophys. Chem, vol.82, pp.83-97, 1999.
DOI : 10.1016/s0301-4622(99)00108-8

E. Evans, Probing the Relation between Force-Lifetime-And Chemistry in Single Molecular Bonds, Annu. Rev. Biophys. Biomem, vol.30, pp.105-128, 2001.

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy, Nature, vol.397, pp.50-53, 1999.
DOI : 10.1038/16219

G. Neuert, C. Albrecht, E. Pamir, and H. E. Gaub, Dynamic force spectroscopy of the digoxigenin-antibody complex, FEBS Lett, vol.580, pp.505-509, 2006.

J. Liphardt, Reversible Unfolding of Single RNA Molecules by Mechanical Force, Science, vol.292, pp.733-737, 2001.
DOI : 10.1126/science.1058498

C. Cecconi, E. A. Shank, C. Bustamante, and S. Marqusee, Direct observation of the three-state folding of a single protein molecule, Science, vol.309, pp.2057-2060, 2005.

X. Zhang, L. Ma, and Y. Zhang, High-Resolution Optical Tweezers for Single-Molecule Manipulation, Yale J Biol. Med, vol.86, pp.367-383, 2013.

L. Ma, Y. Cai, Y. Li, J. Jiao, Z. Wu et al., Single-molecule force spectroscopy of protein-membrane interactions, vol.6, 2017.
DOI : 10.1101/170290

URL : http://europepmc.org/articles/pmc5690283?pdf=render

H. Flyvbjerg, F. Jülicher, P. Ormos, and F. David, Physics of Bio-Molecules and Cells: Les Houches Session LXXV, pp.2-27, 2001.

O. Björnham and M. Andersson, Theory for nonlinear dynamic force spectroscopy, Eur. Biophys. J, vol.46, pp.225-233, 2017.

F. Pillet, L. Chopinet, C. Formosa, and É. Dague, Atomic Force Microscopy and pharmacology: From microbiology to cancerology, Biochim. Biophys. Acta, vol.1840, pp.1028-1050, 2014.
DOI : 10.1016/j.bbagen.2013.11.019

M. Castelain, M. Duviau, A. Canette, P. Schmitz, P. Loubiere et al., The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin, PLoS ONE, vol.11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886384

K. W. Kim, High-resolution imaging of the microbial cell surface, J. Microbiol, vol.54, pp.703-708, 2016.

J. Rheinlaender, A. Gräbner, L. Ott, A. Burkovski, and T. E. Schäffer, Contour and persistence length of Corynebacterium diphtheriae pili by atomic force microscopy, Eur. Biophys. J, vol.41, pp.561-570, 2012.
DOI : 10.1007/s00249-012-0818-4

C. Formosa, M. Herold, C. Vidaillac, R. E. Duval, and E. Dague, Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy, J. Antimicrob. Chemother, vol.70, pp.2261-2270, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01907195

Y. F. Dufrêne, T. Ando, R. Garcia, D. Alsteens, D. Martinez-martin et al., Imaging modes of atomic force microscopy for application in molecular and cell biology, Nat. Nanotechnol, vol.12, pp.295-307, 2017.

M. Radmacher, J. P. Cleveland, M. Fritz, H. G. Hansma, and P. K. Hansma, Mapping interaction forces with the atomic force microscope, Biophys. J, vol.66, pp.2159-2165, 1994.

S. Senapati and S. Lindsay, Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy, p.22, 2018.

L. Chopinet, C. Formosa, M. P. Rols, R. E. Duval, and E. Dague, Imaging living cells surface and quantifying its properties at high resolution using AFM in QI TM mode, vol.48, pp.26-33, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01493934

G. Smolyakov, C. Formosa-dague, C. Severac, R. E. Duval, and E. Dague, High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments, vol.85, pp.8-14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01552823

C. Wang, C. J. Ehrhardt, and V. K. Yadavalli, Single cell profiling of surface carbohydrates on Bacillus cereus, J. R. Soc. Interface, vol.12, 2015.

C. Formosa-dague, P. Speziale, T. J. Foster, J. A. Geoghegan, and Y. F. Dufrêne, Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG, Proc. Natl. Acad. Sci, vol.113, pp.410-415, 2016.

E. Dague, D. Alsteens, J. Latgé, C. Verbelen, D. Raze et al., Chemical force microscopy of single live cells, Nano Lett, vol.7, pp.3026-3030, 2007.

I. Sokolov, S. Iyer, and C. D. Woodworth, Recovery of elasticity of aged human epithelial cells in vitro, Nanomed. Nanotechnol. Biol. Med, vol.2, pp.31-36, 2006.

Q. K. Ong and I. Sokolov, Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces, J. Coll. Interface Sci, vol.310, pp.385-390, 2007.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy, Proc. Natl. Acad. Sci, vol.93, pp.3477-3481, 1996.

A. Beaussart, S. El-kirat-chatel, R. M. Sullan, D. Alsteens, P. Herman et al., Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy, Nat. Protocols, vol.9, pp.1049-1055, 2014.

C. Wang and V. K. Yadavalli, Investigating biomolecular recognition at the cell surface using atomic force microscopy, vol.60, pp.5-17, 2014.

C. Valotteau, V. Prystopiuk, G. Pietrocola, S. Rindi, D. Peterle et al., Single-Cell and Single-Molecule Analysis Unravels the Multifunctionality of the Staphylococcus aureus Collagen-Binding Protein Cna, ACS Nano, vol.11, pp.2160-2170, 2017.

A. Ebner, L. Wildling, R. Zhu, C. Rankl, T. Haselgrübler et al., Functionalization of probe tips and supports for single-molecule recognition force microscopy, Top. Curr. Chem, vol.285, pp.29-76, 2008.

L. Wildling, B. Unterauer, R. Zhu, A. Rupprecht, T. Haselgrübler et al., Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips, Bioconjugate Chem, vol.22, pp.1239-1248, 2011.

E. Jauvert, E. Dague, M. Séverac, L. Ressier, A. Caminade et al., Probing single molecule interactions by AFM using bio-functionalized dendritips, Sens. Actuators B Chem, vol.168, pp.436-441, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268327

J. Helenius, C. Heisenberg, H. E. Gaub, and D. J. Muller, Single-cell force spectroscopy, J. Cell. Sci, vol.121, pp.1785-1791, 2008.

A. Razatos, Y. L. Ong, M. M. Sharma, and G. Georgiou, Molecular determinants of bacterial adhesion monitored by atomic force microscopy, Proc. Natl. Acad. Sci, vol.95, pp.11059-11064, 1998.

D. T. Le, Y. Guérardel, P. Loubière, M. Mercier-bonin, and E. Dague, Measuring Kinetic Dissociation/Association Constants between Lactococcus lactis Bacteria and Mucins Using Living Cell Probes, Biophys. J, vol.101, pp.2843-2853, 2011.

S. K. Lower, M. F. Hochella, and T. J. Beveridge, Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions between Shewanella and ?-FeOOH, Science, vol.292, pp.1360-1363, 2001.

R. J. Emerson, T. S. Bergstrom, Y. Liu, E. R. Soto, C. A. Brown et al., Microscale Correlation between Surface Chemistry, Texture, and the Adhesive Strength of Staphylococcus epidermidis, Langmuir, vol.22, pp.11311-11321, 2006.

S. Kang and M. Elimelech, Bioinspired single bacterial cell force spectroscopy, Langmuir, vol.25, pp.9656-9659, 2009.

A. Meister, M. Gabi, P. Behr, P. Studer, J. Vörös et al., FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond, Nano Lett, vol.9, pp.2501-2507, 2009.

E. Potthoff, D. Ossola, T. Zambelli, and J. A. Vorholt, Bacterial adhesion force quantification by fluidic force microscopy, Nanoscale, vol.7, pp.4070-4079, 2015.

R. A. Cone, Barrier properties of mucus, Adv. Drug Deliv. Rev, vol.61, pp.75-85, 2009.

K. S. Bergstrom, V. Kissoon-singh, D. L. Gibson, C. Ma, M. Montero et al., Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa

J. Hyun, B. S. Lee, H. Y. Ryu, J. H. Sung, K. H. Chung et al., Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats, Toxicol. Lett, vol.182, pp.24-28, 2008.

Y. Wang, H. A. Schroeder, K. L. Nunn, K. Woods, D. J. Anderson et al., Diffusion of Immunoglobulin G in Shed Vaginal Epithelial Cells and in Cell-Free Regions of Human Cervicovaginal Mucus, PLoS ONE, vol.11, 2016.

M. Mastrodonato, D. Mentino, A. Lopedota, A. Cutrignelli, and G. Scillitani, A histochemical approach to glycan diversity in the urothelium of pig urinary bladder, Microsc. Res. Tech, vol.80, pp.239-249, 2017.

M. E. Johansson and G. C. Hansson, Immunological aspects of intestinal mucus and mucins, Nat. Rev. Immunol, vol.16, pp.639-649, 2016.

R. Bansil and B. S. Turner, Mucin structure, aggregation, physiological functions and biomedical applications, Curr. Opin. Colloid Interface Sci, vol.11, pp.164-170, 2006.

A. Allen, W. J. Cunliffe, J. P. Pearson, L. A. Sellers, and R. Ward, Studies on gastrointestinal mucus, Scand. J. Gastroenterol, vol.93, pp.101-113, 1984.

D. Zhou, J. Li, N. Li, and G. Yan, Study on viscosity property of gastrointestinal mucus, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol.21, pp.72-73, 2004.

J. P. Celli, B. S. Turner, N. H. Afdhal, R. H. Ewoldt, G. H. Makindley et al., Erramilli Rheology of gastric mucin exhibits a pH-dependent Sol-gel transition, Biomacromolecules, vol.8, pp.1580-1586, 2007.

J. Kirch, A. Schneider, B. Abou, A. Hopf, U. F. Schaefer et al., Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus, Proc. Natl. Acad. Sci, vol.109, pp.18355-18360, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02119337

J. S. Crater and R. L. Carrier, Barrier properties of gastrointestinal mucus to nanoparticle transport, Macromol. Biosci, vol.10, pp.1473-1483, 2010.

O. Lieleg, R. M. Baumgartel, and A. R. Bausch, Selective Filtering of Particles by the Extracellular Matrix: An Electrostatic Bandpass, Biophys. J, vol.97, pp.1569-1577, 2009.

S. Tadesse, G. Corner, E. Dhima, M. Houston, C. Guha et al., Velcich, A. MUC2 mucin deficiency alters inflammatory and metabolic pathways in the mouse intestinal mucosa, Oncotarget, vol.8, pp.71456-71470, 2017.

A. Magalhaes, Y. Rossez, C. Robbe-masselot, E. Maes, J. Gomes et al., Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding, Sci. Rep, 2016.

S. K. Lindén, T. H. Florin, and M. A. Mcguckin, Mucin Dynamics in Intestinal Bacterial Infection, PLoS ONE, vol.3, 2008.

N. Juge, Microbial adhesins to gastrointestinal mucus, Trends Microbiol, vol.20, pp.30-39, 2012.

J. P. Celli, B. S. Turner, N. H. Afdhal, S. Keates, I. Ghiran et al., Helicobacter pylori moves through mucus by reducing mucin viscoelasticity, Proc. Natl. Acad. Sci, vol.106, pp.14321-14326, 2009.

R. Bansil, J. P. Celli, J. M. Hardcastle, and B. S. Turner, The Influence of Mucus Microstructure and Rheology in Helicobacter pylori, Infection. Front. Immunol, 2013.

N. Hage, T. Howard, C. Phillips, C. Brassington, R. Overman et al., Structural basis of Lewisb antigen binding by the Helicobacter pylori adhesin, BabA. Sci. Adv, vol.1, 2015.

M. C. Van-loosdrecht, J. Lyklema, W. Norde, and A. J. Zehnder, Bacterial adhesion: A physicochemical approach, Microb. Ecol, vol.17, pp.1-15, 1989.

C. J. Van-oss, Interfacial Forces in Aqueous Media

&. Taylor and . Francis, , 1994.

M. Hermansson, The DLVO theory in microbial adhesion, Colloids Surf. B, vol.14, pp.105-119, 1999.

M. Castelain, F. Pignon, J. M. Piau, and A. Magnin, The initial single yeast cell adhesion on glass via optical trapping and Derjaguin-Landau-Verwey-Overbeek predictions, J. Chem. Phys, vol.128, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00285045

C. Sieben, C. Kappel, R. Zhu, A. Wozniak, C. Rankl et al., Influenza virus binds its host cell using multiple dynamic interactions, Proc. Natl. Acad. Sci, vol.109, pp.13626-13631, 2012.

S. Pyrpassopoulos, H. Shuman, and E. M. Ostap, Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes, Mol. Biol. Cell, vol.28, pp.3315-3322, 2017.

P. H. Stillmark, Dorpat: Schnakenburg, Germany, 1888, 2018.

I. Ofek and E. H. Beachey, Mannose Binding and Epithelial Cell Adherence of Escherichia coli, Infect. Immun, vol.22, pp.247-254, 1978.

N. Sharon, Carbohydrates as future anti-adhesion drugs for infectious diseases, Biochim. Biophys. Acta, vol.1760, pp.527-537, 2006.

S. N. Abraham, D. Sun, J. B. Dale, and E. H. Beachey, Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae, Nature, vol.336, pp.682-684, 1988.

C. J. Day, A. W. Paton, R. M. Harvey, L. E. Hartley-tassell, K. L. Seib et al.,

E. Morello, A. Mallet, Y. Konto-ghiorghi, T. Chaze, M. Mistou et al., Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316, PLoS ONE, vol.10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01233374

M. Mercier-bonin and M. Chapot-chartier, Surface Proteins of Lactococcus lactis: Bacterial Resources for Muco-adhesion in the Gastrointestinal Tract, Front. Microbiol, vol.8, 2017.

J. Boekhorst, Q. Helmer, M. Kleerebezem, and R. J. Siezen, Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria, Microbiology, vol.152, pp.273-280, 2006.

D. T. Le, T. L. Tran, M. P. Duviau, M. Meyrand, Y. Guerardel et al., Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204286

E. Dague, D. T. Le, S. Zanna, P. Marcus, P. Loubiere et al., Probing in vitro interactions between Lactococcus lactis and mucins using AFM, Langmuir, vol.26, pp.11010-11017, 2010.

D. T. Le, S. Zanna, I. Frateur, P. Marcus, P. Loubiere et al., Real-time investigation of the muco-adhesive properties of Lactococcus lactis using a quartz crystal microbalance with dissipation monitoring, Biofouling, vol.28, pp.479-490, 2012.

P. Tripathi, A. Beaussart, D. Alsteens, V. Dupres, I. Claes et al., Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG, ACS Nano, vol.7, pp.3685-3697, 2013.

M. Hilleringmann, F. Giusti, B. C. Baudner, V. Masignani, A. Covacci et al., Pneumococcal Pili Are Composed of Protofilaments Exposing Adhesive Clusters of Rrg A, PLoS Pathog, 2008.

M. Hilleringmann, P. Ringler, S. A. Muller, G. De-angelis, R. Rappuoli et al., Molecular architecture of Streptococcus pneumoniae TIGR4 pili, EMBO J, vol.28, pp.3921-3930, 2009.

M. Castelain, E. Koutris, M. Andersson, K. Wiklund, O. Bjornham et al., Characterization of the Biomechanical Properties of T4 Pili Expressed by Streptococcus pneumoniae-A Comparison between Helix-like and Open Coil-like Pili, Chemphyschem, vol.10, pp.1533-1540, 2009.

M. Castelain, S. Ehlers, J. Klinth, S. Lindberg, M. Andersson et al., Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers, Eur. Biophys. J, vol.40, pp.305-316, 2011.

J. Zakrisson, K. Wiklund, O. Axner, and M. Andersson, The Shaft of the Type 1 Fimbriae Regulates an External Force to Match the FimH Catch Bond, Biophys. J, vol.104, pp.2137-2148, 2013.

O. Björnham, H. Nilsson, M. Andersson, and S. Schedin, Physical properties of the specific PapG-galabiose binding in E. coli P pili-mediated adhesion, Eur. Biophys. J, vol.38, pp.245-254, 2009.

J. Zakrisson, K. Wiklund, O. Axner, and M. Andersson, Helix-like biopolymers can act as dampers of force for bacteria in flows, Eur. Biophys. J, vol.41, pp.551-560, 2012.

O. Björnham and O. Axner, Multipili attachment of bacteria with helixlike pili exposed to stress, J. Chem. Phys, vol.130, p.235102, 2009.

C. R. Epler-barbercheck, E. Bullitt, and M. Andersson, Bacterial Adhesion Pili, Membrane Protein Complexes: Structure and Function

J. R. Harris and E. J. Boekema, , vol.87, pp.1-18, 2018.

W. E. Thomas, L. M. Nilsson, M. Forero, E. V. Sokurenko, and V. Vogel, Shear-dependent "stick-and-roll" adhesion of type 1 fimbriated Escherichia coli, Mol. Microbiol, vol.53, pp.1545-1557, 2004.

E. Miller, T. Garcia, S. Hultgren, and A. F. Oberhauser, The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques, Biophys. J, vol.91, pp.3848-3856, 2006.

E. Bullitt, M. Gong, and L. Makowski, A Molecular Bungee Cord-3-Dimensional Helical Reconstruction of Bacterial Adhesion Pili by Electron-Microscopy, Mol. Biol. Cell, vol.3, p.171, 1992.

E. Bullitt and L. Makowski, Bacterial adhesion pili are heterologous assemblies of similar subunits, Biophys. J, vol.74, pp.623-632, 1998.

M. N. Liang, S. P. Smith, S. J. Metallo, I. S. Choi, M. Prentiss et al., Measuring the forces involved in polyvalent adhesion of uropathogenic Escherichia coli to mannose-presenting surfaces, Proc. Natl. Acad. Sci, vol.97, pp.13092-13096, 2000.

M. Andersson, B. E. Uhlin, and E. Fällman, The biomechanical properties of E. coli pili for urinary tract attachment reflect the host environment, Biophys. J, vol.93, pp.3008-3014, 2007.

M. Castelain, A. E. Sjostrom, E. Fallman, B. E. Uhlin, and M. Andersson, Unfolding and refolding properties of S pili on extraintestinal pathogenic Escherichia coli, Eur. Biophys. J, vol.39, pp.1105-1115, 2010.

W. E. Thomas, E. Trintchina, M. Forero, V. Vogel, and E. V. Sokurenko, Bacterial Adhesion to Target Cells Enhanced by Shear Force, Cell, vol.109, pp.913-923, 2002.

G. Zhou, W. Mo, P. Sebbel, G. Min, T. A. Neubert et al., Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: Evidence from in vitro FimH binding, J. Cell Sci, vol.114, pp.4095-4103, 2001.

I. Ofek, D. L. Hasty, and N. Sharon, Anti-adhesion therapy of bacterial diseases: Prospects and problems, FEMS Immunol. Med. Microbiol, vol.38, pp.181-191, 2003.

K. C. Dansuk and S. Keten, Tunable seat belt behavior in nanocomposite interfaces inspired from bacterial adhesion pili, Soft Matter, vol.14, pp.1530-1539, 2018.

L. M. Nilsson, O. Yakovenko, V. Tchesnokova, W. E. Thomas, M. A. Schembri et al., The cysteine bond in the Escherichia coli FimH adhesin is critical for adhesion under flow conditions, Mol. Microbiol, vol.65, pp.1158-1169, 2007.

M. M. Sauer, R. P. Jakob, J. Eras, S. Baday, D. Eri¸seri¸s et al., Catch-bond mechanism of the bacterial adhesin FimH, Nat. Commun, vol.7, 2016.

A. Jacquot, C. Sakamoto, A. Razafitianamaharavo, C. Caillet, J. Merlin et al., Dynamic modulation of fimbrial extension and FimH-mannose binding force on live bacteria under pH changes: A molecular atomic force microscopy analysis, J. Biomed. Nanotechnol, vol.10, pp.3361-3372, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076690

J. E. Klinth, M. Castelain, B. E. Uhlin, and O. Axner, The Influence of pH on the Specific Adhesion of P Piliated Escherichia coli, PLoS ONE, vol.7, 2012.

A. J. Merz, M. So, and M. P. Sheetz, Pilus retraction powers bacterial twitching motility, Nature, vol.407, pp.98-102, 2000.

B. Maier, Using laser tweezers to measure twitching motility in Neisseria, Curr. Opin. Microbiol, vol.8, pp.344-349, 2005.

B. Maier, L. Potter, M. So, H. S. Seifert, and M. P. Sheetz, Single pilus motor forces exceed 100 pN, Proc. Natl. Acad. Sci, vol.99, pp.16012-16017, 2002.

N. Biais, D. L. Higashi, J. Bruji´cbruji´c, M. So, and M. P. Sheetz, Force-dependent polymorphism in type IV pili reveals hidden epitopes, Proc. Natl. Acad. Sci, vol.107, pp.11358-11363, 2010.

J. L. Baker, N. Biais, and F. Tama, Steered Molecular Dynamics Simulations of a Type IV Pilus Probe Initial Stages of a Force-Induced Conformational Transition, PLoS Comput. Biol, vol.9, 2013.

B. Maier and G. C. Wong, How Bacteria Use Type IV Pili Machinery on Surfaces, Trends Microbiol, vol.23, pp.775-788, 2015.

A. P. Gunning, D. Kavanaugh, E. Thursby, S. Etzold, D. A. Mackenzie et al., Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins, Int. J. Mol. Sci, vol.17, 1854.

N. Ahmad, H. Gabius, S. André, H. Kaltner, S. Sabesan et al., Galectin-3 Precipitates as a Pentamer with Synthetic Multivalent Carbohydrates and Forms Heterogeneous Cross-linked Complexes, J. Biol. Chem, vol.279, pp.10841-10847, 2004.

M. Sletmoen, T. K. Dam, T. A. Gerken, B. T. Stokke, and C. F. Brewer, Single-Molecule Pair Studies of the Interactions of the alpha-GalNAc (Tn-Antigen) Form of Porcine Submaxillary Mucin with Soybean Agglutinin, Biopolymers, vol.91, pp.719-728, 2009.

T. K. Dam and C. F. Brewer, Probing Lectin-Mucin Interactions by Isothermal Titration Microcalorimetry, vol.1207, pp.978-979, 2015.

S. Hadjialirezaei, G. Picco, R. Beatson, J. Burchell, B. T. Stokke et al., Interactions between the breast cancer-associated MUC1 mucins and C-type lectin characterized by optical tweezers, PLoS ONE, vol.12, p.175323, 2017.

Y. Wang, Y. Kotsuchibashi, Y. Liu, and R. Narain, Study of Bacterial Adhesion on Biomimetic Temperature Responsive Glycopolymer Surfaces, p.15, 2018.

A. Varki and S. Kornfeld, Historical Background and Overview, In Essentials of Glycobiology

A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart et al., , 2015.

J. Mahdavi, B. Sondén, M. Hurtig, F. O. Olfat, L. Forsberg et al., Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation, Science, vol.297, pp.573-578, 2002.

C. J. Day, E. N. Tran, E. A. Semchenko, G. Tram, L. E. Hartley-tassell et al., Glycan:glycan interactions: High affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells, Proc. Natl. Acad. Sci, vol.112, pp.7266-7275, 2015.

T. D. Mubaiwa, L. E. Hartley-tassell, E. A. Semchenko, F. E. Jen, Y. N. Srikhanta et al., The glycointeractome of serogroup B Neisseria meningitidis strain MC58

T. D. Mubaiwa, E. A. Semchenko, L. E. Hartley-tassell, C. J. Day, M. P. Jennings et al., The sweet side of the pathogenic Neisseria: The role of glycan interactions in colonisation and disease

N. O'riordan, M. Kilcoyne, L. Joshi, and R. M. Hickey, Exploitation of SPR to Investigate the Importance of Glycan Chains in the Interaction between Lactoferrin and Bacteria, vol.17, 1515.

I. Belotserkovsky, K. Brunner, L. Pinaud, A. Rouvinski, M. Dellarole et al., Glycan Interaction Determines Shigella Tropism toward Human T Lymphocytes. mBio, vol.9, pp.2309-2326, 2018.

C. Lai, J. Hütter, C. Hsu, H. Tanaka, S. Varela-aramburu et al., Analysis of Carbohydrate-Carbohydrate Interactions Using Sugar-Functionalized Silicon Nanoparticles for Cell Imaging, Nano Lett, vol.16, pp.807-811, 2016.

J. M. De-la-fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Cañada et al., Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions, Angew. Chem. Int. Ed, vol.40, pp.2257-2261, 2001.

M. J. Hernáiz, J. M. De-la-fuente, Á. G. Barrientos, and S. Penadés, A Model System Mimicking Glycosphingolipid Clusters to Quantify Carbohydrate Self-Interactions by Surface Plasmon Resonance, Angew. Chem, vol.41, pp.1554-1557, 2002.

P. V. Santacroce and A. Basu, Probing specificity in carbohydrate-carbohydrate interactions with micelles and Langmuir monolayers, Angew. Chem. Int. Ed. Engl, vol.42, pp.95-98, 2003.

J. Zhao, Y. Liu, H. Park, J. M. Boggs, and A. Basu, Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-sulfogalactose carbohydrate-carbohydrate interaction using model systems and cellular binding studies, Bioconjugate Chem, vol.23, pp.1166-1173, 2012.

G. N. Misevic, Molecular self-recognition and adhesion via proteoglycan to proteoglycan interactions as a pathway to multicellularity: Atomic force microscopy and color coded bead measurements in sponges, Microsc. Res. Tech, vol.44, pp.304-309, 1999.

C. Tromas, J. Rojo, J. M. De-la-fuente, A. G. Barrientos, R. García et al., Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy, Angew. Chem. Int. Ed. Engl, vol.40, pp.3052-3055, 2001.

A. Carvalho-de-souza, D. N. Ganchev, M. M. Snel, J. P. Van-der-eerden, J. F. Vliegenthart et al., Adhesion forces in the self-recognition of oligosaccharide epitopes of the proteoglycan aggregation factor of the marine sponge Microciona prolifera, Glycoconj. J, vol.26, pp.457-465, 2009.

K. E. Haugstad, T. A. Gerken, B. T. Stokke, T. K. Dam, C. F. Brewer et al., Enhanced self-association of mucins possessing the T and Tn carbohydrate cancer antigens at the single-molecule level, Biomacromolecules, vol.13, pp.1400-1409, 2012.

K. E. Haugstad, A. G. Hati, C. T. Nordgard, P. S. Adl, G. Maurstad et al., Direct Determination of Chitosan-Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate-Mucin Interactions, Polymers, vol.7, pp.161-185, 2015.

K. E. Haugstad, S. Hadjialirezaei, B. T. Stokke, C. F. Brewer, T. A. Gerken et al., Interactions of mucins with the Tn or Sialyl Tn cancer antigens including MUC1 are due to GalNAc-GalNAc interactions, Glycobiology, vol.26, pp.1338-1350, 2016.

S. Hakomori, Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization, Glycoconj. J, vol.21, pp.125-137, 2004.

M. Cai, W. Zhao, X. Shang, J. Jiang, H. Ji et al., Direct evidence of lipid rafts by in situ atomic force microscopy, Small, vol.8, pp.1243-1250, 2012.

G. P. Gellermann, T. R. Appel, A. Tannert, A. Radestock, P. Hortschansky et al., Raft lipids as common components of human extracellular amyloid fibrils, Proc. Natl. Acad. Sci, vol.102, pp.6297-6302, 2005.
DOI : 10.1073/pnas.0407035102

URL : http://www.pnas.org/content/102/18/6297.full.pdf

J. González-maeso, GPCR oligomers in pharmacology and signaling, Mol. Brain, 1920.

J. Adamcik, J. Jung, J. Flakowski, P. De-los-rios, G. Dietler et al., Understanding amyloid aggregation by statistical analysis of atomic force microscopy images, Nat. Nano, vol.5, pp.423-428, 2010.
DOI : 10.1038/nnano.2010.59

URL : https://infoscience.epfl.ch/record/149082/files/nnano-1.2010.59.pdf

D. M. Fowler, A. V. Koulov, W. E. Balch, and J. W. Kelly, Functional amyloid-From bacteria to humans, Trends Biochem. Sci, vol.32, pp.217-224, 2007.
DOI : 10.1016/j.tibs.2007.03.003

M. Cohen and A. Varki, Chapter Three-Modulation of Glycan Recognition by Clustered Saccharide Patches, In International Review of Cell and Molecular Biology, vol.308, pp.75-125, 2014.
DOI : 10.1016/b978-0-12-800097-7.00003-8

P. R. Crocker, J. C. Paulson, and A. Varki, Siglecs and their roles in the immune system, Nat. Rev. Immunol, vol.7, pp.255-266, 2007.

S. S. Oh and A. H. Chishti, Host Receptors in Malaria Merozoite Invasion. In Malaria: Drugs, Disease and Post-genomic Biology, Current Topics in Microbiology and Immunology, pp.203-232, 2005.
DOI : 10.1007/3-540-29088-5_8

K. Matsuo, H. Ota, T. Akamatsu, A. Sugiyama, and T. Katsuyama, Histochemistry of the surface mucous gel layer of the human colon, Gut, vol.40, pp.782-789, 1997.

S. C. Baos, D. B. Phillips, L. Wildling, T. J. Mcmaster, and M. Berry, Distribution of Sialic Acids on Mucins and Gels: A Defense Mechanism, Biophys. J, vol.102, pp.176-184, 2012.

K. Bazaka, R. J. Crawford, E. L. Nazarenko, and E. P. Ivanova, Bacterial Extracellular Polysaccharides. In Bacterial Adhesion; Advances in Experimental Medicine and Biology, pp.213-226, 2011.

T. Riet, J. Joosten, B. Reinieren-beeren, I. Figdor, C. G. Cambi et al., N-glycan mediated adhesion strengthening during pathogen-receptor binding revealed by cell-cell force spectroscopy

H. Schillers, C. Rianna, J. Schäpe, T. Luque, H. Doschke et al., Standardized Nanomechanical Atomic Force Microscopy Procedure (SNAP) for Measuring Soft and Biological Samples
URL : https://hal.archives-ouvertes.fr/hal-01575563

A. Beaussart, A. E. Baker, S. L. Kuchma, S. ;. El-kirat-chatel, G. A. O'toole et al., Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili, ACS Nano, vol.8, pp.10723-10733, 2014.

I. J. Goldstein and R. D. Poretz, 2-Isolation, Physicochemical Characterization, and Carbohydrate-Binding Specificity of Lectins, The Lectins, pp.33-247, 1986.